Discussion:
The Gender Difference of Peer Influence in Higher Education
(Li Han and Tao Li)

Thijs van Rens
CREI and Universitat Pompeu Fabra

June 1, 2007
1 Peer effects in higher education

• Results
 (a) There are (strong) peer effects in higher education
 (b) Only females experience peer effects
 (c) Effects are asymmetric: smart help stupid, stupid do not hurt smart
 (d) Results are robust across outcome and treatment variables

• Contributions
 (a) New dataset (Chinese college), better suited for the question
 (b) Careful analysis of a quasi-randomized experiment
 (c) Interesting results, different from previous studies
2 Why China?

- Interesting in itself!

- Larger social interaction between students

\[\Delta \text{outcomes} = PE \times \text{interaction} \times \Delta \text{peers} \]

- Students share small room for long period (4 years)

- Few other opportunities for voluntary social interaction

- Roommates in same year and same major

- Random component in dorm room assignment

 - Parents and students have no say in room assignment

 - Administration assigns students to rooms quasi-randomly

 - Room change strongly discouraged

Workshop on Human Capital, Inequality and Gender, Barcelona
3 Randomized experiment

- An ideal experiment:

```
Heterogeneous sample (college freshmen)

Treatment group (dorm A)  Control group (dorm B)
```

Random assignment

```
Outcomes (GPA) ↔ TE Outcomes (GPA)
```

Avg treatment effect (TE)
4 Randomized experiment

- An ideal experiment:

 - Heterogeneous sample (college freshmen)
 - Random assignment
 - Treatment group (dorm A)
 - Control group (dorm B)
 - Outcomes (GPA)
 - TE
 - Avg treatment effect (TE)

- The quasi-experiment in this paper:

 - Heterogeneous sample (freshmen Chinese college)
 - Province P, major M
 - Provincial assignment
 - Treatment group PM
 - Control group PM
 - Outcomes (GPA)
 - TE
 - Avg treatment effect (TE)
 - Province P’, major M’
 - Quasi-random assignment
 - Treatment group P’M’
 - Control group P’M’
 - Outcomes (GPA)
 - TE
 - Avg treatment effect (TE)
5 Randomized experiment

- Quasi-random assignment of freshmen to dorms
 - Housing office copies student ID numbers from Excel file to vacancy list
 - Is this random?
 - Careful description of the process & randomization checks
 - Restrict to non-host-province subsample

- But: if assignment is random, then why is roommates’ ability different?
 - cf twin studies
 - Sampling error?
 - Is this random?
6 Gender differences in peer effects

\[
A_i = \beta_0 + \beta_1 P_i + \beta_2 O_i + X_i' \beta_3 + \varepsilon_i
\]

- **Outcome**: GPA
- **Peer ability**: CET
- **Own ability**: CET
- **Controls**: \(X_i\)

• **Results**
 - **Women**: \(\beta_1/\beta_2 = 0.71^{**}\)
 - **Men**: \(\beta_1/\beta_2 = -0.28\)

• **Technical remarks**
 - Need standard errors on the estimates of interest, i.e. \(\beta_1/\beta_2\)
 - Is the *difference* between men and women significant?
7 Gender differences in peer effects

\[A_i = \beta_0 + \beta_1 P_i + \beta_2 O_i + X_i' \beta_3 + \varepsilon_i \]

- **Results**
 - Women: $\beta_1/\beta_2 = 0.71^{**}$
 - Men: $\beta_1/\beta_2 = -0.28$

- **Conclusions**
 “men compare more with the broader group whereas women care more about close relationships.”
 - Can we test this directly?
8 Gender differences in peer effects

\[A_i = \beta_0 + \beta_1 P_i + \beta_2 O_i + X_i'\beta_3 + \varepsilon_i \]

\(A_i \) outcome (GPA)
\(P_i \) peer ability (CET)
\(O_i \) own ability (CET)
\(X_i'\beta_3 \) controls
\(\varepsilon_i \) error term

- Results
 - Women: \(\beta_1/\beta_2 = 0.71^{**} \)
 - Men: \(\beta_1/\beta_2 = -0.28 \)

- Conclusions
 “men compare more with the broader group whereas women care more about close relationships.”
 - Can we test this directly?
 - Is the interaction the same for females and males?

\[\Delta \text{outcomes} = \text{PE} \times \text{interaction} \times \Delta \text{peers} \]
9 Gender differences in peer effects

\[
A_i = \beta_0 + \beta_1 P_i + \beta_2 O_i + X_i' \beta_3 + \varepsilon_i
\]

outcome (GPA) peer ability (CET) own ability (CET) controls

- Results
 - Women: \(\beta_1/\beta_2 = 0.71^{**} \)
 - Men: \(\beta_1/\beta_2 = -0.28 \)

- Conclusions
 “men compare more with the broader group whereas women care more about close relationships.”
 - Can we test this directly?
 - Is the interaction the same for females and males?

\(\Delta \text{outcomes} = PE \times \text{interaction} \times \Delta \text{peers} \)

* “Females obviously work harder, ...” (p.3)
10 Gender differences in peer effects

\[A_i = \beta_0 + \beta_1 P_i + \beta_2 O_i + X_i'\beta_3 + \varepsilon_i \]

\(A_i \) = outcome (GPA) \(P_i \) = peer ability (CET) \(O_i \) = own ability (CET) \(X_i'\beta_3 + \varepsilon_i \) = controls

- Results
 - Women: \(\beta_1/\beta_2 = 0.71^{**} \)
 - Men: \(\beta_1/\beta_2 = -0.28 \)

- Conclusions
 “men compare more with the broader group whereas women care more about close relationships.”
 - Can we test this directly?
 - Is the interaction the same for females and males?

\[\Delta \text{outcomes} = PE * \text{interaction} * \Delta \text{peers} \]

* “Females obviously work harder, ...” (p.3)
* “Males obviously play more soccer”

Workshop on Human Capital, Inequality and Gender, Barcelona
11 Summarizing

1. A very nice paper!
 - Interesting topic
 - Carefully implemented empirical work
 - Provoking conclusions

2. Quasi-randomized experiment
 - Some doubts about the source of the identifying variation

3. Gender differences in peer effects
 - Need to test the difference
 - Can we directly test the hypothesis of interest?

4. External validity
 - The Gender Difference of Peer Influence in Higher Education in China
 \[\Delta \text{outcomes} = \text{PE} \times \text{interaction} \times \Delta \text{peers} \]