Discussion

“An Equilibrium Asset Pricing Model with Labor Market Search”
by Lars-Alexander Kuehn, Nicolas Petrosky-Nadeau and Lu Zhang

Thijs van Rens
University of Warwick, Centre for Macroeconomics, IZA and CEPR

Barcelona GSE Summer Forum
Workshop on “Asset Prices and the Business Cycle”

Barcelona, 17-18 June 2013
An Eq’m Asset Pricing Model with Labor Market Search

- Paper combines two well-known models
 - Production-based asset pricing model (RBC + Epstein-Zin preferences)
 - Search model of the labor market (Diamond-Mortensen-Pissarides-Merz)
- Predictions for labor markets do not change much
 - Tallarini (2000)
 - My intuition: discount factor dominated by separation rate
- Predictions for asset prices improve substantially
- Contributions
 - Methodological: non-linear solution is key
 - Substantive: asset pricing
- Very interesting (and much discussed) paper!
Results

- Asset pricing model with labor market search delivers
 - “a coherent account of asset prices”
 - “endogenous rare disasters”

- Non-linearity makes *deep* recessions *even deeper*
 - Endogenous rare disasters
 - High equity premium
 - Time-varying equity premium (predictable from labor market conditions)
 - Stock market volatility
 - Time-varying volatility (uncertainty ‘shocks’)
 - Highly volatile profits, procyclical dividends (profits minus investment)

- All of these results bring the model closer to the data
 - Wide range of statistics for asset prices
 - Probability and size of disasters (Barro-Ursúa)
Non-linearity and rare disasters

Skewness in unemployment:

2.5 percentile median 97.5 percentile
5.9% 7.3% 19.3%
Non-linearity and rare disasters: mechanism

- Sources of the non-linearity
 - Costs of posting vacancies increases in recessions

 Cost per hire \(\kappa_t = \frac{\kappa_0}{q(\theta)} + \kappa_1, \quad q'(\theta) < 0, \quad q''(\theta) > 0 \)

 - Diminishing returns in the matching function, \(q'' > 0 \)
 - Fixed costs of posting vacancies \(\kappa_1 \)

 - Wage rigidity increases in recessions

 \(W_t = \eta (X_t + \kappa_t \theta_t) + (1 - \eta) b \)

- Volatile labor market makes this relevant
 - Countercyclical hiring costs
 - Small profits (small surplus calibration)
 - Wage rigidity

- Why need a relatively high separation rate?
 - My intuition: otherwise (convex) hiring costs too small (?)
How realistic is this mechanism?

- Intuitively, something is not right
 - Rare disasters are just recessions with particularly low job creation
 - Was the financial crisis so severe because hiring costs were particularly high?
 - Is Greece in so much trouble because wages have become (even) more rigid?

- A peace offering
 - I will buy into the mechanism, ...
 - if this is *one out of many* types of disasters

- But then, why is the model fit so good?
 - In the model, θ predicts excess returns much better than in the data
 - Yet, the model matches the average level of the equity premium

- Possible explanation:
 - Full participation \Rightarrow skewness unemployment spills over to employment
 - With participation margin, skewness employment will be less
Minor comments

- Compare results to model with competitive labor market
 - Current comparative statics stop short of removing search frictions
 - Need to model endogenous participation, to avoid full employment

- Distinguish between wage rigidity and small surplus
 - Conceptually different
 - Close link comes from Nash bargaining assumption, not realistic

- Use timing consistent with job finding rate between 0 and 1
 - Steady state unemployment rate $\bar{u} = \frac{s}{s+f(\theta_t)} \rightarrow 0$ as $f(\theta_t) \rightarrow 1$
 - Alternative timing assumption (Blanchard-Galí)

 $$ u_{t+1} = (1 - f(\theta_t)) [u_t + s (1 - u_t)] \Rightarrow \bar{u} = \frac{(1 - f(\theta_t)) s}{(1 - f(\theta_t)) s + f(\theta_t)} $$

- Calibration of b matters for other model predictions (Costain-Reiter)