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A Construction of the skill premium

Our measure for the skill premium is the log wage differential between college graduates

and high school graduates. The relative hours worked and supply of skill are defined as

the log ratio of the number of college graduates over the number of high school graduates

in the population and the workforce respectively. Following Autor et al. (2005), we map

the five education levels in the data to college and high school graduate equivalents

and control for changes in experience, gender, race, ethnicity and marital status. To

do this, we first estimate a standard Mincerian earnings function for log wages. The

predicted values from this regression for males and females at 5 education levels in

5 ten-year experience groups yield average wages for 50 education-gender-experience

cohorts keeping constant the other control variables. We then calculate the number of

workers in each cell as a fraction of the workforce or population. Dividing by a reference

category, this procedure gives us relative the prices and quantities of skill for 50 skill

categories. Finally, we aggregate to two skill types by averaging relative prices using

average quantity weights and averaging quantities using average price weights.1 The

resulting series are adjusted for seasonality using the X-12-ARIMA algorithm of the

Census Bureau.

1For the skill premium and relative hours series, we calculate average prices and quantities weighting
individual workers in each cell by hours worked. For the relative supply series this is not possible since
we do not observe hours worked for non-employed workers. For this series, we weight averages only by
the CPS-ORG sample weights.
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The way we measure the skill premium and the relative hours and supply of skill

allows easy comparison to models with workers of only two skill levels. Yet, the measures

do justice to the greater degree of heterogeneity in the data. This is necessary to ensure

that changes in the price of skill are correctly attributed to changes in the skill premium

and changes in the quantity of skill to the relative hours worked or supply of skill.

Suppose, for example, that there is an increase in the number of workers with a masters

degree. This represents an increase in the supply of skill. However, a naive measure

of the relative supply, which just counts the number of workers with at least a college

degree, would not reflect this increase. Moreover, if workers with a masters degree earn

on average higher wages than workers with a bachelors degree only, then a naive measure

of the skill premium would increase. In our measures, this increase in the supply of skill

would leave the skill premium unchanged and increase the relative supply measure. Our

data show a pronounced increase in the skill premium since 1980, which seems to slow

down mildly towards the end of the 1990s, as documented in previous studies, e.g. Autor

et al. (2005). The fluctuations in our measure of the skill premium are similar to those

in the Mincerian return to schooling.

B Time-series properties of the variables

This section documents univariate and multivariate time-series properties of the vari-

ables used in the baseline and extended specifications in the paper. These time series

include the baseline and naive measures of the skill premium and the relative hours

worked of skill as well as the relative supply of skill that were constructed for the paper.

It also considers other macroeconomic variables that are employed in the specifications

such as hours, output, productivity and the relative price of investment.

In order to support our specification in which all variables enter in first differences

in the VAR, we check a few issues of concern in this section. First, do the variables

exhibit enough autocorrelation to justify the VAR approach? Table 1 supports that

this is the case. It shows the partial correlations the series in first differences as in the

baseline specification in the paper. Second, is there still interesting autocorrelation in

the first differences, even when we control for measurement error via a moving-average

component? Table 2 reports ARIMA(4,1) models for the series used in the estimation.

The number of AR-lags reported corresponds to best model fit and significance across the

various series. The table shows that the MA-component matters for the skill premium

and the relative price of investment and that, controlling for this MA component, there

is still autocorrelation and hence high frequency dynamics present.
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Next, Table 3 examines the unit root properties of the variables employed in the

estimation based on a Dickey-Fuller tests which test for the null hypothesis of a unit

root and a KPSS with the null hypothesis of stationarity. For all variables, the Dickey-

Fuller test does not reject a unit root in levels and rejects stationarity in levels. Note that

we also checked for trend stationarity here. Likewise, the KPSS test rejects the null of

stationarity in level. For hours, output and productivity the KPSS test does not deliver

clear results on stationarity (this has been noted in the hours puzzle debate already).

For all variables, both tests support stationarity in first differences in all variables (the

investment price showing some exceptions) which supports our specification of the VAR

in first differences.

Finally, as all of the variables of interest are integrated, cointegration should be

checked in order to justify the VAR in first differences compared to a vector-error cor-

rection specification. Table 4 reports the results of pairwise Johansen cointegration tests

between the skill premium, skill supply, relative hours worked by skilled workers, the

relative price of investment, hours, output and labor productivity. The figures in the

table exhibit the rank of the cointegrating vector and hence the number of cointegration

relationships. Here, the test is carried out with a constant both in the cointegration

relationship and the remaining VAR, referring to µ and γ in the following equation, and

with a trend ρt in the cointegration relationship:

△yt = α(βyt−1 + µ+ ρt) +

p
∑

i=0

△yt−i + γ + ε.

The only incidents of potential cointegration appear in the case of relative hours worked

with the investment price and the relative supply of skill. Since the stationarity tests

for the relative hours worked and the relative price of investment did not deliver clear

results, it is possible that the cointegration relationship between these two variables

detects stationarity in one variable rather than a true cointegration relationship.

Apart from the results on the pairwise cointegration relationships shown in the table,

the VAR specification with the different combinations of the variables should be checked

for cointegration. It can be shown that for the baseline specification with the skill

premium, productivity and hours worked and relative hours worked, the Johansen trace

test indicates a rank of zero for the cointegration vector. When including the relative

price of investment, the rank of this vector is equal to one.
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Table 1: Autocorrelation of data series

Series Partial autocorrelation with lag

1 2 3 4 5 6 7 8

Premium baseline -0.499* -0.093 -0.040 -0.205* 0.022 0.004 0.162 -0.070

Premium naive -0.531* -0.209* -0.133 -0.181 0.076 0.015 0.160 0.029

Rel. empl. baseline -0.232* -0.056 0.069 0.042 -0.089 0.117 0.093 -0.329*

Rel. empl. naive -0.333* -0.055 0.123 0.127 -0.114 0.073 0.099 -0.268*

Rel. supply -0.415* -0.235* 0.049 0.160 0.012 0.125 0.205* -0.362*

Price 0.583* 0.053 0.114 0.019 -0.209* 0.063 -0.285* -0.055

Hours 0.580* 0.170 0.004 -0.082 0.080 -0.023* -0.017 -0.199

Output 0.335* 0.142 -0.002 0.004 -0.153 0.069 0.005 -0.086

Productivity 0.019 0.147 -0.111 -0.018 -0.068 -0.007 0.107* -0.043

Notes: Series used are seasonally adjusted series and in log differences. Here, * denotes significance on 5%.

Table 2: ARIMA models

Series constant AR lags MA lags

1 2 3 4 1

Premium baseline 0.002* -1.358* -0.572* -0.212 -0.176 0.872*

Rel. empl. baseline 0.006* -0.677 -0.139 0.067 0.095 0.436

Rel. supply 0.006* -0.098 0.064 0.251* 0.135 -0.443

Price -0.015* -0.252 0.429* 0.028 0.234* 0.846*

Hours 0.000 -0.165 0.487* 0.157 -0.091 0.652

Output 0.007* -0.295 0.298 0.059 0.063 0.584

Productivity 0.004* 0.394 0.139 -0.162 0.008 -0.366

Notes: Here, * denotes significance on 5%.
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Table 3: Unit root tests

Series Dickey-Fuller Test KPSS Test

H0: unit root H0: stationarity

Levels

Premium baseline not rejected rejected

Rel. empl. baseline not rejected* rejected

Rel. supply not rejected rejected

Price not rejected rejected

Hours not rejected rejected

Output not rejected rejected**

Productivity not rejected rejected

First Differences

Premium baseline rejected not rejected

Rel. empl. baseline rejected not rejected

Rel. supply rejected not rejected

Price rejected no clear result

Hours rejected not rejected

Output rejected not rejected

Productivity rejected not rejected

Notes: Unit root test for levels done with and without trend (except for hours). Unit
root test for first differences done with and without constant. Results based on 1%
significance. * DF rejected at 10 %. ** KPSS rejected with constant, with trend
rejected on 5% only for less than one lag.

Table 4: Pairwise Johansen cointegration tests

Series Rank of cointegration vector

Premium baseline Rel. empl. baseline Rel. supply

Premium baseline - 0 0

Rel. empl. baseline 0 - 1

Price 0* 1 0

Hours 0 0 0

Output 0 0** 0

Productivity 0 0 0

Notes: Here, * denotes that a rank of zero resulted from the Johansen test with a constant, but
rank of one when a trend was included. ** denotes a rank of one when a constant was
included and a rank of zero when applying a trend in the cointegration test.
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C Identification and Estimation

The estimation of structural shocks using long-run zero and sign restrictions is imple-

mented in two steps. First, we estimate a reduced form VAR in the variables labor

productivity, total hours worked, the skill premium, relative hours of skilled workers

and in some specifications also the relative price of investment goods. Second, we map

the reduced form coefficients and residuals into structural coefficients and shocks by nor-

malizing the variance of all structural shocks to one, assuming orthogonality between

these shocks and imposing the identifying restrictions. Without sign restrictions, the

long-run identifying restrictions are incorporated using a Cholesky decomposition of the

infinite horizon forecast error variance. Adding a long-run sign restriction in this setup

means that we have to take away a long-run zero restriction. Hence, the forecast vari-

ance is no longer lower triangular, since it has one zero less. In order to implement this,

we first impose the long-run zero restrictions and then apply the sign restrictions to the

variables of interest, here the skill premium, relative hours of skilled workers and labor

productivity.2

C.1 Standard Long-Run Identification

Identification involves finding a mapping A of the residuals from a reduced form VAR

into so-called structural residuals such that these can be interpreted as technology

shocks. More precisely, name vt the residuals from a reduced form VAR with E[vtv
′

t] = Ω.

The relationship between the n structural and reduced form residuals is then et = Avt

which induces AΣeA
′ = Ω. The remaining assumptions in order to pin down A then

need to come from restrictions on the matrix of long-run effects. These assumptions

can be incorporated as zero restrictions in the matrix of long-run effects C ≡
∑

∞

i=0ΦiA,

where Φi are the impulse-response coefficients.

For identification, all identified shocks are assumed to be orthogonal and the variance

of the structural residuals is normalized such that Σe = I. We use a lower triangular

structure of the matrix C in order to impose our identifying assumptions for the tech-

nology shocks. This is easily obtained by decomposing the variance of the ∞-step ahead

2This involves rotating and checking the sign restriction in a subsystem of the long-run horizon
forecast revision matrix. This works in analogy to the implementation of short-run sign restrictions,
see e.g. Peersman (2005), in which case the variance covariance matrix of the residuals (short-run
revision matrix) is rotated. Please refer to the Technical Appendix for details on the estimation and
identification.



C IDENTIFICATION AND ESTIMATION 7

forecast error ηt,∞ = Xt+∞ − Et(Xt+∞) which is equal to

MSE(∞) = (

∞
∑

i=0

Φi)Ω(

∞
∑

i=0

Φi)
′

with the Cholesky decomposition. We vary the order of the variables in the VAR

in order to impose our different identifying restrictions, i.e. order labor productivity

first in the Gaĺı identification, order the skill premium first before labor productivity

when distinguishing skill-biased and skill-neutral technology shocks and ordering the

investment price first before labor productivity when separately identifying investment-

specific and investment-neutral technology shocks. The respective variables that the

restrictions are imposed upon need to enter in first differences in the VAR for the

identification to work3. It has to be noted that this procedure uniquely pins down the

effect of the identified technology shocks on all variables in the VAR. It can be shown

that the result is not affected by the additional (unnecessary) zero restrictions in the

matrix of long-run effects. In that sense, this approach is the same as imposing the

identifying restrictions within an instrumental-variable setup as suggested by Shapiro

and Watson (1988). Francis et al. (2003) document this for the Gaĺı identification.

C.2 Combination of long-run zero and sign restrictions

In order to separate skill-biased from other technology shocks, we combine our previous

long-run zero restrictions with sign restrictions on the long-run effects of these two

shocks on the skill premium and labor productivity. As before, we assume that Σe = I

and that the reduced form residuals map into structural residuals such that AΣeA
′ = Ω.

As in section B.1, imposing our long-run restrictions is then equivalent to finding a

decomposition L of the long-run forecast revision variance such that LL′ =MSE(∞).

Assume that the skill premium and labor productivity are ordered first in the VAR

(This is not necessary, but convenient for comparison with the Cholesky decomposition

in section B.1). First, we impose the long-run zero restrictions, i.e. only the two types

of technology shocks can affect the skill premium and labor productivity in the long

run. This means that l13 = l14 = ... = l1n = 0 and l23 = l24 = ... = l2n = 0 and results in

L1:2,1:2L
′

1:2,1:2 =MSE(∞)1:2,1:2.

Next, we implement sign restrictions on this upper left 2-by-2 system in a similar fashion

3This can easily be extended to a specification in levels.
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as in Peersman (2005). This involves a rotation of L1:2,1:2 = TQ, using the Cholesky

decomposition TT ′ = L1:2,1:2 and an orthonormal matrix Q (i.e. QQ′ = I):

Q =

(

cos(θ) −sin(θ)

sin(θ) cos(θ)

)

,

where θ ∈ [0, π]. As in Peersman (and similar to Uhlig (2005)), our VAR is estimated in

a Bayesian framework. For each draw of the posterior distribution of the reduced form

VAR coefficients, we calculate the long-run forecast revision variance. We then choose θ

from a grid of [0, π] and use T and Q to calculate the rotation of the upper left elements

of the matrix L. If the sign restrictions are satisfied, we keep the draw.

After having implemented the restrictions, we can now proceed to calculate the

remaining elements of the matrix L such that this matrix provides a valid decomposition

of the long-run variance. For the remaining elements of the first two columns, we use

that L3:n,1:2L
′

1:2,1:2 = MSE(∞)3:n,1:2. Last, we can determine the lower right block of

L. Note that there are no restrictions imposed on these elements and that they are

not related to the shocks of interest. First, we use the information on the first two

rows and columns to calculate what is missing to explain the lower right elements of

the long-run variance using LL′. This ’remaining’ lower right block of the variance is

then decomposed using the Cholesky decomposition. Having found all elements of L,

we then determine the matrix A via A = (
∑

∞

i=0Φi)
−1L.

Identification of skill supply shocks in addition to skill-biased and other technology

shocks adds one more variable, relative hours worked, and one more sign restriction

to the system. Here, the relative hours, the skill premium and labor productivity are

ordered first in the system. As before, we then impose the long-run zero restrictions, i.e.

only skill supply shocks and the two types of technology shocks can affect the relative

hours, the skill premium and productivity. This means that l13 = l14 = ... = l1n = 0,

l23 = l24 = ... = l2n = 0 and l33 = l34 = ... = l3n = 0 and results in L1:3,1:3L
′

1:3,1:3 =

MSE(∞)1:3,1:3. Rotating this 3-by-3 system now involves three rotation matrices:

Q12 =







cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






, Q13 =







cos(ψ) 0 − sin(ψ)

0 1 0

sin(ψ) 0 cos(ψ)






, Q23 =







1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)






,

with θ ∈ [0, π], ψ ∈ [0, π] and ϕ ∈ [0, π] and Q = Q12Q13Q23. As before, we rotate

L1:3,1:3 and check whether the sign restrictions are satisfied. We then calculate the

remaining elements of L equivalent to above.
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In the application, we draw 1000 candidates from the posterior distribution of the

reduced from coefficients and divide [0, π] into a grid of 100 values of θ for the imple-

mentation of the single sign restriction and into a grid of 103 = 1000 values for θ, ψ and

ϕ when identifying supply shocks along with the technology shocks. We compute the

impulse responses for all draws that satisfy the sign restrictions and report the median

and the 16th and 84th percentile from the resulting distribution. It is straightforward to

extend this identification scheme to incorporate more long-run restrictions, e.g. identify

investment-specific shocks using long-run restrictions. For this, order the relative price

of investment first, and identify investment-specific shocks. Order the skill premium

and labor productivity second and third or the relative hours, the skill premium and

productivity second to fourth and impose the identification strategy described above on

the remaining elements.

C.3 Estimation of the BVAR

Before identification, the reduced form VAR is estimated in a Bayesian framework.

More precisely, we obtain 1000 draws of the posterior distribution of the reduced form

coefficients and then apply the identification procedure to each of these in order to

produce draws of the distribution of the structural coefficients.4 As is standard in

the literature reporting impulse-responses from Bayesian VARs, the point estimates

exhibited correspond to the median and the confidence intervals to the 16th and 84th

percentiles of the posterior distribution. As these refer to credible sets rather than

confidence intervals in the classical sense, note that these cannot directly be compared

to one or two standard error bands in the classical sense.

All baseline results that are presented in the paper are estimated in a Bayesian

framework with a Minnesota prior. The Minnesota prior consists of a normal prior for

the VAR coefficients and a fixed and diagonal residual variance. The prior mean d0 is

restricted such that it represents a random walk structure on the VAR coefficients, i.e.

in the standard case, the prior mean on the first lag is set to unity and the prior mean

on the other lags (remaining parameters) is set to zero. Here, this is reflected by the

fact that all variables enter the VAR in first differences resulting in a zero mean for all

lags.

The prior variance Σd0 = Σd0(φ) of the coefficients depends on three hyper-parameters

φ1, φ2 and φ3, that determine the tightness and decay on own lags, other lags and exoge-

4This approach goes back to Canova (1991) and Gordon and Leeper (1994) and is feasible if the
system is just identified, that is, if there exists a unique mapping between draws of the residual variance
covariance matrix and draws of the identification matrix A.
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nous variables. Except for the decay, a loose prior is chosen for the hyper-parameters,

namely φ1 = 0.2, φ2 = 0.5 and φ3 = 105. The decay parameter d = 3. The advantage

of the structure of the Minnesota prior is exactly this ability to separately deal with the

lags of the variables, i.e. own and other lags, as well as exogenous variables. Together

with a normal likelihood of the data the Minnesota prior produces a posterior that can

be derived analytically. Hence, the estimation does not rely on sampling procedures.

D Long sample results and identifying restrictions

In an earlier version of this paper, we identified skill-biased technology shocks as all

shocks that affect the skill premium in the long run, and estimated the responses of

these shocks over the 1979:1 to 2000:4 period. In this short sample, the skill premium

significantly increases after Gaĺı shocks and hours worked fall after SBT shocks. In

this version, we extend the sample period to 1979:1 to 2006:4. Adding 6 years of data

significantly changes our results, which are no longer robust over subsamples. This

problem is due to a problem with the simple identifying long-run restriction, which does

not matter in the short sample but is apparent when extending the sample period.

To understand what drives identification, we plot the first differences of the three

variables in our VAR (skill premium, productivity and hours) over time. To facilitate

eyeballing this graph, we smooth these first differences using a 9-quarter centered moving

average with linearly declining weights. We then plot the identified shocks from our

VAR with the long-run zero restriction, similarly smoothed, in the same graph, which

is provided in Figure 1.

As is clear from the graph, identified SBT shocks are closely related to changes in

the skill premium. Over most of the sample, periods of relatively high growth in the

skill premium coincide with periods of relatively high productivity growth, and periods

when the skill premium growth is below trend are periods when productivity growth is

below trend as well. This explains why we find that SBT shocks increase productivity

in the short sample.

Around 2000, however, this relationship breaks down. In the post 2000 period, the

rise in the skill premium flattens out, whereas productivity grows strongly. As a result,

it seems that SBT shocks estimated on the later part of the sample reduce productivity,

calling into question their interpretation as technology shocks. This suggests that there

is something wrong about the identification strategy using long-run zero restrictions

only.

What type of shock could raise the skill premium permanently but decrease pro-
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Figure 1: Skill premium, labor productivity and identified shocks
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ductivity? In other words: What type of shock raises productivity permanently and

decreases the skill premium. If we maintain the assumption that only technology shocks

affect productivity in the long run, the obvious candidate is a technology shocks that is

biased towards unskilled labor. And of course it is perfectly plausible that such shocks

exist in reality. By imposing only the zero restriction that SBT shocks affect the skill

premium, we are including technology shocks biased towards unskilled labor as well as

towards skilled labor in our estimated shocks. And since SBT and unskill-biased (UBT)

shocks that increase the skill premium have opposite effects on productivity (as well as

hours worked), the responses of these variables become non-robust and sensitive to the

sample period.

The solution to the problem is to identify SBT shocks with a combination of a zero

and a sign restriction. SBT shocks are the only shocks that affect the skill premium and

affect the premium and labor productivity in the same direction. The zero restriction

limits the set of shocks to SBT and UBT shocks. The sign restriction rules out UBT

shocks, so that the only shocks that satisfy the combination of both restrictions are SBT

shocks. Using this modified restriction, our results are robust to the sample period.

This also means that we can no longer use a production function decomposition to

replicate the baseline results, because it is not possible to impose the sign restriction

using this approach. Therefore, we start with the results from the production function
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decomposition, show that we can replicate the same results in a VAR with a long-run

zero restriction, and then argue why we need the sign restriction and impose that to

obtain our baseline results.

E Skill bias in technology, Gaĺı identification

Gaĺı (1999) identifies permanent technology shocks as the only source of long-run move-

ments in labor productivity. In a wide range of models, closed-economy, stationary,

one-sector RBC models as well as models of the new Keynesian variety, shocks to total

factor productivity are the only shocks that satisfy this identifying restriction. The

remaining disturbances in the structural VAR are non-technology or ‘demand’ shocks,

an amalgum of other possible shocks in the model: government expenditure shocks,

preference shocks, or shocks to price or wage markups. Here, we evaluate the skill bias

in technology shocks identified in this manner.

Figure 2 presents impulse response functions to technology shocks, identified as in

Gaĺı (1999). The first row of responses replicates the estimates in Gaĺı (1999), using

data on labor productivity and hours worked over the period 1948:I-1994:IV (postwar

sample). These responses are estimated using a VAR with 4 lags and a ‘flat’ prior with

median equal to the OLS point estimate. A positive innovation in technology leads to

an almost immediate increase in labor productivity equal to the long-run effect, and a

reduction in hours worked. The first finding is supportive of the interpretation of the

identified shock as a permanent improvement in technology. The second finding has

typically been interpreted as evidence in favor of price rigidities, which dampen the

substitution effect on impact and thus make the income effect of higher productivity

that increases the demand for leisure dominant in the short run.

The second row shows the responses from the same sample, now estimated with our

prior on the declining importance of the higher order lag coefficients, see Section 2 in

the paper, and 8 lags as in our baseline specification. Compared to the responses in

the first row, the response of hours worked is shifted up slightly in this specification, so

that the initial drop in hours is no longer significant. The third row again estimates the

same specification, but using data for the 1979:I-2006:II (recent) sample. Over this time

period, the fall in hours worked is significant and more persistent than in the postwar

sample, although the differences are not significant.

In the fourth row of Figure 2, we add the skill premium and the relative hours

worked to the VAR. Introducing this additional regressor leaves the responses of labor

productivity and total hours worked virtually unchanged. The skill premium does not
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respond to a permanent improvement in technology, while relative hours fall significantly.

This finding seems inconsistent with the hypothesis of skill-biased technological change.

However, since the identifying restriction encompasses both skill-biased and unskill-

biased technology shocks and since these two shocks have opposing effects on the skill

premium, the skill premium does not react to technology shocks if SBT and UBT shocks

are equally important. Table 5 shows that technology shocks only explain about 5% of

the business cycle variation of output, but up to 10% of the variation in total and relative

hours worked.

Table 5: Variance decomposition with identified
technology shocks

Horizon 8 16 32

output

technology shock 5.85 5.20 5.05
(0.8, 17.7) (0.7,17.4) (0.6,17.6)

total hours

technology shock 10.29 9.12 8.88
(1.9, 28.7) (1.5,27.1) (1.2,26.6)

premium

technology shock 1.72 2.17 2.45
(0.6, 5.1) (0.6,7.2) (0.5,8.6)

relative hours

technology shock 8.94 10.16 10.34
(2.33,20.2) (2.26,23.1) (2.12,24.3)

Notes: Numbers are in percents; the contribution of all shocks, including the
(omitted) residual shock, adds up to 100% at each horizon. We report
medians and 68% Bayesian confidence bands from the posterior distribution.
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Figure 2: Impulse-responses to technology shocks
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Notes: Responses in percent and quarters to a positive one-standard-deviation shock.
Confidence intervals are 68% Bayesian bands.
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OLS with 4 lags.
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F Additional Tables and Figures

Figure 3 plots our quarterly series for the log wage premium of college over high school

graduates. Our data show a pronounced increase in the skill premium since 1980, which

seems to slow down mildly towards the end of the 1990s, as documented in previous

studies, e.g. Autor et al. (2005). For comparison, the figure also shows a naive measure of

the skill premium (the log wage difference between workers with at least a college degree

and those with at most a high school degree) and the Mincerian return to schooling. The

trend and fluctuations in our measure of the skill premium are similar to those in the

Mincerian return to schooling, indicating we have adequately controlled for heterogeneity

beyond two skill types. Figure 4 shows similar plots for the relative hours worked and

the relative supply of skilled labor. Again, there is a substantial difference between our

preferred measure and the naive measure of the relative hours of skill. The increase in

the employment and the supply of skill was roughly similar over the last two decades,

but the higher frequency fluctuations differ markedly as we document below.

Table 6 shows the business cycle correlation of the skill premium, the relative hours

and supply of skill with leads and lags of productivity and output. Here, the series

are HP-filtered with λ = 1600. Note that the skill premium significantly correlated

with leads of productivity, but not with output. Relative hours worked of skill are

significantly and negatively correlated with output and productivity, while the relative

supply of skill is significantly correlated also with leads and lags of productivity, but not

output.

Figure 5 shows the responses for skill biased and other technology shocks when

including the relative price of investment into the specification. Compared to the original

Fisher identification, both investment-neutral and investment-biased technology shocks

can now be encompassed by SBT shocks. The Figure documents that the results are

virtually the same when including the investment price. Further, both UBT and SBT

shocks drive the relative investment price down, but the effect is less strong for SBT

shocks. This suggests that the INT and some of the IBT shocks are encompassed by

SBT shocks and the rest of the IBT shocks are contained in the UBT shocks now.
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Table 6: Unconditional business cycle correlations: Leads and Lags

Series Correlation with t+ i of output and productivity

-5 -4 -3 -2 -1 0 1 2 3 4 5

Output

Skill premium -0.0094 -0.0388 0.0599 0.0996 0.0929 0.1131 0.0710 0.0731 0.0260 0.0348 -0.0772

Rel. hours -0.1420 -0.2427* -0.3728* -0.4684* -0.4961* -0.4124* -0.2851* -0.1294 0.0114 0.1440 0.2217*

Rel. supply -0.2845* -0.2250 * -0.1683* -0.1788* -0.1239 -0.0220 0.0723 0.1429 0.2466* 0.3238* 0.3382*

Productivity

Skill premium 0.0726 0.0004 0.1341 0.1621 0.1524 0.1763 0.1604* 0.1872* 0.1068 0.1256 -0.0795

Rel. hours -0.2112* -0.3477* -0.3997* -0.4245* -0.3734* -0.2591* -0.0874 0.0323 0.1584 0.2638* 0.1883*

Rel. supply -0.0720 -0.0812 -0.0332 -0.0996 -0.0889 -0.0761 0.0057 -0.0190 0.0749 0.1501 0.0765

Notes: Data series are constructed as explained in section 2.3 and seasonally adjusted using X-12-ARIMA. The skill premium and relative hours worked correspond to the

baseline series. The series are HP-filtered with λ=1600. The * indicates significance of at least 10%.
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Figure 3: Skill premium and Mincer return to schooling in the US
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Figure 4: Relative hours worked and relative supply of skill in the US
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Figure 5: Impulse-responses to skill-biased and other technology shocks including the relative price of investment goods
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Notes: Percent responses to a positive one-standard-deviation shock. Confidence intervals are 68% Bayesian bands.
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